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Based on the concepts o f  percolation theory (leakage theory), an attempt is made to explain the initial 
stage of  contact melting. Using the fluctuation-dissipation theorem, an equation is obtained for  the ki- 
netic and diffusion stages of  the contact-melting process. 

The first-order phase transition consisting in the formation of a liquid phase in contact of dissimilar 
solid substances is called contact melting. A necessary condition for the occurrence of contact melting is the 
presence of a minimum on the liquidus curve of  the phase diagram of the contacting substances. 

The process of contact melting has been studied in in a number of works [1-7] in which existing views 
on the process are analyzed in various classes of  systems: metallic, organic, ionic, and cryohydratic. However, 
it must be noted that there is no unified and complete theory that can explain the onset and growth of a liquid 
volume in contact of dissimilar substances. 

The number of theoretical and experimental investigations concerning the kinetics of the contact-melt- 
ing process, especially in the initial stage, and the transition from a kinetic regime to a diffusion one is very 
limited [1, 2, 4, 7]. Use is made mainly of a diffusion approximation, which is incorrect in the initial stage. 
The works [8, 9] are devoted to investigations of  the special features of this stage of growth of a new phase 
in interdiffusion; however the conclusions of these investigations are based only on a number of model as- 
sumptions. 

In the present work we suggest a scheme of  transition of the contact of two dissimilar crystals into a 
liquid that is based on leakage theory (percolation theory) and a derivation of the dependence of liquid-phase 
growth on time that is based on adoption of the Callen-Welton fluctuation-dissipation theorem [10, 11]. 

It is known that first-order phase transitions, which include contact melting, occur by fluctuation nu- 
cleation of a new phase in the volume of the initial phase, i.e., in the matrix. Here the process of formation 
and disappearance of these fluctuations is a dynamic process: at sites of the matrix where there is a sufficient 
concentration of foreign atoms, a new phase is formed locally that can disappear and appear at another site. 

The contact-melting process is represented by us as follows. When two dissimilar metals come in con- 
tact, their interdiffusion occurs. "Foreign" atoms, penetrating into the lattice of the other metal, loosen it. When 
the concentration of "foreign" atoms near the contact zone reaches a certain threshold value (the so-called 
threshold of percolation or leakage [12-14]), a quasi-two-dimensional liquid interlayer with a thickness of the 
order of several interatomic distances first forms. Since there is a flow of  foreign atoms into the solid phase, 
their concentration increases and correspondingly the number of heterophase fluctuation nuclei increases. The 
number of  nuclei can become so large that they will begin to merge with each other, thus resulting in contact 
melting. 

In contact melting diffusion occurs near the critical melting point. The regularities of this diffusion, as 
shown in [I 1], differ significantly from those of ordinary diffusion. 

Let us consider this problem in more detail for a one-dimensional model of the process of  contact 
melting. 
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From the viewpoint of molecular-kinetic theory, diffusion of a "foreign" atom in a solvent lattice is a 
process of  random movements. Let us select the origin of coordinates in the plane of  initial contact of  two 
cylindrical specimens and suppose that x(t) is a random function of time that characterizes the position of  a 
"foreign" atom relative to the origin of coordinates. We perform the spectral decomposition of this function: 

o o  

I" do) 
x (t) = j x o exp ( -  icot) 2--~- " 

(1) 

We find the average of the product of two functions taken at different instants of  time: 

d o M ~  
K (t" - t ) =  (x (t)x (t '))= f f (x o xo, ) exp { - i  (ot  + co't)} 

4/t2 ' 
(2) 

where the integrals are calculated, as in Eq. (1), between infinite limits. The angular brackets in Eq. (2) imply 
averaging over a Gibbs ensemble. 

The quantity K(t'-t)  is called a correlation (paired) function and, by virtue of  the homogeneity of  
time, depends only on the time difference t ' - t .  In order that the fight-hand side of  Eq. (2) also depend on 
t ' - t ,  it is necessary to introduce the delta-function 5(00" + co) under the integral. 

Consequently, it is required that 

(Xto Xto, ) = (X2)t0 2X8 (co + cO'). (3) 

Actually, this formula is the definition of the spectral density of the correlation function (x2)o. 
Substituting Eq. (3) into Eq. (2) and eliminating the integration with respect to the variable to' by  

means of  the ~-function, we obtain 

K (t)=(x(O)x(t))= I (x2)ooexp{ -it°t} dcO. 
2z¢ 

(4) 

In particular, the mean square of the fluctuating quantity is expressed as follows: 

K (0) = (X 2 (0)) = I (X2)¢° do) 
2n 

(5) 

We consider the mean square of the displacement of an individual particle ((x(t) - x(0))2). Squaring 
and averaging, we obtain 

((x (t) - x (0)) 2) -- (x 2 (g)) - 2 (x (t) x (0)) + (x 2 (0)) .  

By virtue of the homogeneity of time, (xz(t))) = (x2(0)) = K(0). Thus, we have 

((x(t)-x(O))2)=2 f (x2)o~ (1 - exp ( -  ic0t))-~- = 4 1  (x2)o ( 1 - c o s  cOt) dco. 
z~ 2~ 

0 (6) 

In transforming the integral, we take into account that the quantity (x2)o is real. 
For further analysis we should relate the spectral density of the correlation function (x2)o, which char- 

acterizes the coordinate fluctuations of the diffusing atoms, to the dissipative properties of the medium under 
an external action on it. To do this, we use the Callen-Welton fluctuation-dissipation theorem. As the dissipa- 
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tive characteristic of the medium, we take the mobility bo~ of the particles in exposure of the medium to the 
harmonic force 

uo (t) = Re {bt0 F 0 exp (it.o/)} . (7) 

The mobility entering Eq. (7) is a complex quantity: b~ = b'o + ibm. According to the fluctuation-dissipation 
theorem, the spectral density (x2)o is expressed in terms of the real part of  the mobility [10, 11]: 

2 2T , (8) 
(x)o~ = --5 bo~" 

t o  

Substituting Eq. (8) into Eq. (6), we obtain a formula for the mean square of the displacement [10]: 

( ( x ( t ) - x ( O ) ) 2 ) = 8 T i  b-2~°2 (1 - cos tot) d°) 
co 2re 

0 

(9) 

We apply formula (9) to the analysis of  the initial stage of the contact melting. It should be recalled 
that the mean value of the square of the displacement of an individual particle can also be interpreted for 
cooperative phenomena, i.e., for phenomena associated with the behavior of  all the "foreign" atoms dissolved 
in the matrix. Since, upon reaching the leakage threshold, near the contact zone a liquid film is formed, in the 
vicinity of the critical melting point the left-hand side of formula (6) can be interpreted as the liquid-phase 
width. In [11] it was shown that there are no limitations on the use of  the Callen-Welton theorem in the im- 
mediate vicinity of the critical point. Consequently, formula (6) should describe rather correctly both the initial 
stage of contact melting and the subsequent one. 

Assuming that the real part of the mobility is independent of  the frequency over the entire frequency 
range, i.e., b~ = b, and integrating Eq. (6), we obtain 

((x (t) - x (0)) 2) = 2bTt = 2 D t ,  (10) 

i.e., the usual (parabolic) diffusion law. 
Next we assume that the liquid phase is characterized by a certain maximum frequency co m of the 

Debye type. In this case in integral (9) the upper limit can be replaced by tom, or, which is the same, the 
function b m can be considered to be different from zero only for to < to m. From the aforesaid it follows that 
there are the times t for which the condition tomt << 1 or t << O.Vn l is fulfilled. In this case it is possible to 
expand the cosine into a Taylor series and restrict oneself to the first two terms of this series: 

(o)t) 2 
cos cot - 1 - - -  

2 

Substitution of this expansion into integral (9) gives the dependence of  the width of the liquid-phase layer in 
the vicinity of the critical point: 

((x (t) - x  (0)) 2) _ 4TO~mb" t 2 , (11) 

O) m 

where b' = __1 ~ b~o do~ is the 
°hn o 

frequencies under consideration. 

mean value of  the real part of the coefficient of mobility over the range of 
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Fig. 1. Time dependence of  the diffusion coefficient in contact melting. 

Using the positive value of the square root of  the right-hand side of Eq. (11), we obtain a linear law 
of growth of  the liquid-phase width y(t) = ~/((x(t)-x(0))2) = t~14To~b'/~ with a velocity v = dy /d t  = 

Thus, with rather natural assumptions formula (9) corresponds to the usual (parabolic) law of diffusion 
away from the critical point and a linear law of  liquid-phase growth near the critical point (in the initial stage 
of contact melting). 

Formula (9) can be written in the following form: 

((x (t) - x  (0)) 2) = 2D (t) t ,  (12) 

where the time-dependent diffusion coefficient has the form 

4T ~ b~ alto (13) 
D (t) = - -  Jo (1 - cos tot) - -  

t ~-~ 2n 

To describe satisfactorily experimental data on the contact melting, the graph of the function D(t) must 
be similar to that of the arctangent function (see Fig. 1), i.e., 

D (t) = D O arctan (kt) ,  (14) 

where arctan (kt) implies that the principal branch of  the multivalued function is considered. 
A similar dependence of the width of the contact liquid interlayer on time for the Cu-Mg and Cu-Ag 

systems was established experimentally in [7]. 
Consequently, for small times the diffusion coefficient increases linearly with time, and for rather large 

times it tends to a certain asymptotic value Do. 
Taking into account that for small t the function arctan (kt) = kt and substituting formula (14) into Eq. 

(12), we obtain 

((x (t) - -x  (0)) 2) = 2D0kt 2 . (15) 

A comparison of the right-hand side of  formula (15) with that of Eq. (11) gives 

- - r  

whence we have Do =.2Tb and k = O~m/rC. 

D0k = - -  

m 

2T o) m b' (16) 

/ 'c 

Thus, proceeding from fundamental concepts of  the thermodynamic theory of fluctuations, it is possible 
to describe both the initial (kinetic) and subsequent stages of contact melting. To do this, one should select a 
spectrum of mobilities b~ such that the fight-hand side of formula (13) would give the arctangent function (14) 
or a function that is similar in its properties to the arc tangent and reaches its asymptotic value rather rapidly. 
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Here a linear law of growth of the liquid-interlayer width is obtained within the framework of much more 
natural propositions of the thermodynamic theory of fluctuations and percolation theory than reasoning based 
on model assumptions. 

N O T A T I O N  

t and t', different instants of time; (x2)~0, spectral density of the correlation function x(t); bo~, particle 
mobility in exposure of the medium to a harmonic force; uc0(t), particle velocity in exposure to the external 
force F(t) = Fo exp (/cot); Re, real part of the complex number; corn, maximum frequency; b~0 and b~, coeffi- 
cients of the real and imaginary parts of the complex number, respectively; co, cyclic frequency; T, period of 
oscillations; i, imaginary part of the complex number (~/L-]-); D, interdiffusion coefficient. 
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